Last Fall Degree, HFE, and Weil Descent Attacks on ECDLP
نویسندگان
چکیده
Weil descent methods have recently been applied to attack the Hidden Field Equation (HFE) public key systems and solve the elliptic curve discrete logarithm problem (ECDLP) in small characteristic. However the claims of quasi-polynomial time attacks on the HFE systems and the subexponential time algorithm for the ECDLP depend on various heuristic assumptions. In this paper we introduce the notion of the last fall degree of a polynomial system, which is independent of choice of a monomial order. We then develop complexity bounds on solving polynomial systems based on this last fall degree. We prove that HFE systems have a small last fall degree, by showing that one can do division with remainder after Weil descent. This allows us to solve HFE systems unconditionally in polynomial time if the degree of the defining polynomial and the cardinality of the base field are fixed. For the ECDLP over a finite field of characteristic 2, we provide computational evidence that raises doubt on the validity of the first fall degree assumption, which was widely adopted in earlier works and which promises sub-exponential algorithms for ECDLP. In addition, we construct a Weil descent system from a set of summation polynomials in which the first fall degree assumption is unlikely to hold. These examples suggest that greater care needs to be exercised when applying this heuristic assumption to arrive at complexity estimates. These results taken together underscore the importance of rigorously bounding last fall degrees of Weil descent systems, which remains an interesting but challenging open problem.
منابع مشابه
On the last fall degree of zero-dimensional Weil descent systems
In this article we will discuss a new, mostly theoretical, method for solving (zero-dimensional) polynomial systems, which lies in between Gröbner basis computations and the heuristic first fall degree assumption and is not based on any heuristic. This method relies on the new concept of last fall degree. Let k be a finite field of cardinality qn and let k be its subfield of cardinality q. Let ...
متن کاملOn Polynomial Systems Arising from a Weil Descent
In the last two decades, many computational problems arising in cryptography have been successfully reduced to various systems of polynomial equations. In this paper, we revisit a class of polynomial systems introduced by Faugère, Perret, Petit and Renault. After arguing that these systems are natural generalizations of HFE systems, we provide experimental and theoretical evidence that their de...
متن کاملHow Secure Are Elliptic Curves over Composite Extension Fields?
We compare the method of Weil descent for solving the ECDLP, over extensions fields of composite degree in characteristic two, against the standard method of parallelised Pollard rho. We give details of a theoretical and practical comparison and then use this to analyse the difficulty of actually solving the ECDLP for curves of the size needed in practical cryptographic systems. We show that co...
متن کاملOn the First Fall Degree of Algebraic Equations
We give an alternative approach and improvements on bounds developed by Hodges, Petit and Schlather [5], and Petit and Quisquater [9] concerning the first fall degree of algebraic equations. In particular, we improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials [10].
متن کاملOn the First Fall Degree of Summation Polynomials
We improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015